Typen LBS, LBST, LBF, LBR und LBH

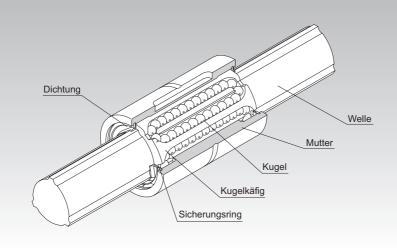


Abb. 1 Schnittmodell der Kugelkeilwelle LBS für hohe Drehmomente

Auswahlkriterien	A3-6
Konstruktionshinweise	A3-123
Optionen	A 3-126
Bestellbezeichnung	△3-128
Vorsichtsmaßnahmen	A3-129
Zubehör für Schmierung	A24-1
Montage und Wartung	B 3-31
Wellenquerschnitte der Keilwellen	A3-17
Äquivalenzfaktor	A3-27
Spiel in Drehrichtung	▲3-30
Genauigkeitsklassen	▲3-35
Maximale Fertigungslänge nach Genauigkeit	△3-121

Aufbau und Merkmale

Bei Kugelkeilwellen für hohe Drehmomente verfügt die Keilwelle über drei Keilflanken, die in gleichen Abständen um 120° versetzt angeordnet sind. Jede Keilflanke ist beidseitig von je zwei Kugelreihen (insgesamt sechs Reihen) umschlossen (siehe Abb. 1).

Die Laufbahnen sind als Kreisbogenlaufrillen präzisionsgeschliffen, deren Durchmesser annähernd mit dem Kugeldurchmesser übereinstimmen. Wirkt auf die Keilwelle oder die Keilwellenmutter ein Drehmoment, nehmen die drei Kugelreihen auf der Last tragenden Seite das Moment gleichmäßig auf, und der Drehpunkt stellt sich automatisch ein. Bei umgekehrtem Drehmoment erfolgt die Momentaufnahme durch die anderen drei Kugelreihen auf der Gegenseite.

Die Kugelreihen befinden sich in einem in der Keilwellenmutter integrierten Käfig, der einen ruhigen Lauf und eine reibungslose Zirkulation ermöglicht. Bei dieser Ausführung können die Kugeln auch dann nicht herausfallen, wenn die Mutter von der Keilwelle getrennt wird.

[Kein Winkelspiel]

In Kugelkeilwellen für hohe Drehmomente kann durch eine einzige Keilwellenmutter eine Vorspannung aufgebracht werden, um das Winkelspiel zu beseitigen und die Steifigkeit zu erhöhen.

Im Gegensatz zu konventionellen verdrehgesicherten Wellenführungen mit Kreis- oder Gotikbogen-Laufrillen ist es hier nicht erforderlich, zwei Keilwellenmuttern gegeneinander zu verspannen, um eine Vorspannung zu erzeugen. So ist eine kompakte Bauweise möglich.

[Hohe Steifigkeit und präzise Positionierung]

Durch den großen Flächenkontakt der Laufkugeln in der Laufrille und die Möglichkeit, eine Vorspannung aufzubringen, wird die Einfederung minimal gehalten. Somit wird eine hohe Steifigkeit und präzise Positionierung gewährleistet.

[Schnelle Linear- und Rotationsbewegungen]

Aufgrund der konstruktiv realisierten sehr guten Fettrückhaltung sowie des steifen Kugelkäfigs kann die Kugelkeilwelle auch für schnelle Linearbewegungen über lange Zeiträume mit Fettschmierung betrieben werden. Die fast gleichen Radialabstände der tragenden und nicht tragenden Kugeln führen dazu, dass sich Fliehkräfte auf die Kugeln nur geringfügig auswirken und selbst bei schnellen Rotationsbewegungen stabile Linearbewegungen erreicht werden.

[Kompakter Aufbau]

Im Gegensatz zu konventionellen verdrehgesicherten Wellenführungen erfolgt der Kugelumlauf bei diesem Modell nicht an der Außenfläche der Keilwellenmutter. Dadurch wird der Außendurchmesser der Keilwellenmutter verringert, wodurch ein kompakter, raumsparender Aufbau erreicht wird.

[Typ mit Kugelkäfig]

Durch den Einsatz eines Kugelkäfigs können die Kugeln auch dann nicht herausfallen, wenn die Mutter von der Keilwelle gezogen wird.

[Einsatz als Kugelumlaufbuchse für Schwerlastbetrieb möglich]

Da die Laufbahnen als Kreisbogenlaufrillen ausgeführt sind, deren Durchmesser nahezu dem Kugeldurchmesser entspricht, ergeben sich große Kugelkontaktflächen, die auch in Radialrichtung hohe Tragzahlen ermöglichen.

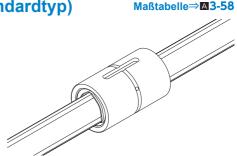
[Zwei parallele Wellen können durch eine einzige Kugelkeilwelle ersetzt werden]

Da eine einzige Welle gleichzeitig Drehmoment- und Radialbelastungen aufnehmen kann, können parallel konfigurierte, doppelte Wellen durch eine Einzelwellen-Konfiguration ersetzt werden. Die Vorteile sind eine einfache Installation sowie eine Platz sparende Ausführung.

Anwendungen

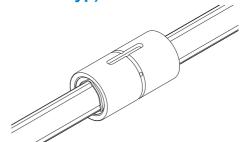
Kugelkeilwellen für hohe Drehmomente sind zuverlässige Linearsysteme für vielfältige Anwendungszwecke. Dazu zählen beispielsweise Säulen und Arme von Industrierobotern, automatische Ladevorrichtungen, Transfermaschinen, automatische Fördersysteme, Reifenformmaschinen, Spindeln von Punktschweißmaschinen, Führungswellen von Hochgeschwindigkeits-Lackierautomaten, Nietmaschinen, Drahtwickelmaschinen, Aufspannköpfe von Erodiermaschinen, Antriebsspindeln von Schleifmaschinen, Zahnradantriebe und Präzisionsschaltwellen.

Maßtabelle⇒A3-60

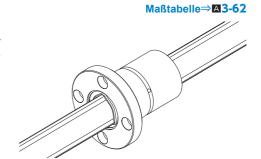

Kugelkeilwellen für hohe Drehmomente

Typenübersicht

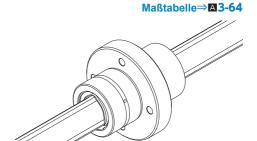
[Ausführungen und Merkmale]


Zylindrische Mutter LBS (Standardtyp)

Bei diesem Typ hat die Mutter eine zylindrische Form für eine äußerst kompakte Bauweise. Die Drehmomentübertragung erfolgt über eine Passfeder.

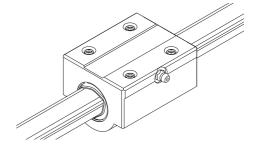

Zylindrische Mutter LBST (Schwerlasttyp)

Ein Typ für den Schwerlasteinsatz mit dem gleichen Mutterdurchmesser wie der Typ LBS. Die Mutter ist jedoch länger. Dieser Typ ist optimal geeignet für den Einsatz auf engstem Raum zur Übertragung hoher Drehmomente und bei überhängenden Lasten oder Momentbelastungen.


Mutter LBF mit Flansch

Die Keilwellenmutter kann über den Flansch einfach am Gehäuse montiert werden. Dieser Typ ist hervorragend geeignet für schmale Gehäuse und solche, bei denen eine Verformung durch die Einarbeitung einer Passfedernut zu befürchten ist

Mutter LBR mit Flansch


Dieser Typ basiert auf dem Schwerlasttyp LBST. Er ist im Mittelteil mit einem Flansch versehen, sodass er besonders für Einsätze unter Momentbelastungen, wie in Industrieroboterarmen, geeignet ist.

Blockmutter LBH

Die steife, blockförmige Keilwellenmutter benötigt kein Gehäuse und kann direkt an der Maschine montiert werden. So wird ein kompaktes, hochsteifes Führungssystem realisiert.

Maßtabelle⇒A3-66

[Ausführungen und Merkmale]

Massive Präzisions-Keilwellen (Standardtyp)

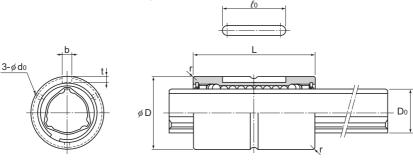
Kaltgezogene Keilwelle mit präzisionsgeschliffener Laufbahn. Wird in Kombination mit einer Keilwellenmutter verwendet.

Spezialgefertigte Keilwellen

Auf Anfrage bietet THK spezialgefertigte Keilwellen mit größerem Durchmesser am Ende oder in der Mitte.

Hohle Keilwellen (Typ K)

Gezogene, hohle Keilwellen sind für das Durchführen von Kabeln oder Leitungen, zur Belüftung bzw. zur Gewichtsverringerung verfügbar.


Gehäuse-Innentoleranz

Beim Einbau der Keilwellenmutter in das Gehäuse wird in der Regel eine Übergangspassung empfohlen. Wenn die Genauigkeit der verdrehgesicherten Wellenführung nicht sehr hoch sein muss, eignet sich auch eine Spielpassung.

Tab. 1 Gehäuse-Innentoleranz

Gehäuse-Innentoleranz	Normale Bedingungen	H7
Genause-innentoleranz	Bei geringem Spiel	J6

Typ LBS (Standardtyp)

			Abmessungen Keilwellenmutter									
Baureihe/-größe	Außen	durchmesser		Länge					Abmessungen Passfedernut			
	D	Toleranz	L	Toleranz	L ₂	L₃	D ₂	b H8	t +0,1 0	ℓ_0	r	С
LBS 15	23	0 -0,013	40	0	_	_	_	3,5	2	20	0,5	_
○● LBS 20	30		50	-0,2	_	_	_	4	2,5	26	0,5	_
○● LBS 25	37	0 -0,016	60		_	_	_	5	3	33	0,5	_
○● LBS 30	45		70		_	_	_	7	4	41	1	_
○● LBS 40	60	0	90	0 -0,3	_	_	_	10	4,5	55	1	_
○● LBS 50	75	-0,019	100		_	_	_	15	5	60	1,5	_
○● LBS 70	100	0	110		_	_	_	18	6	68	2	_
○● LBS 85	120	-0,022	140	0				20	7	80	2,5	_
○● LBS 100	140	0 -0.025	160	-0,4		_	_	28	9	93	3	_

Hinweis: O: Modellnummern, die für den Einsatz bei hohen Temperaturen geeignet sind (Metallkäfige: Betriebstemperaturen von bis zu 100 °C); für den Einsatz geeignete Modellnummern: LBS20 bis 100 (Beispiel) LBS20 A CL + 500L H

Symbol für hohe Temperaturen

: Modellnummern, die für den Einsatz mit Filzdichtungen geeignet sind. Für den Einsatz geeignete Modellnummern: LBS20 bis 100 Filzdichtungen können nicht für Kugelkeilwellen mit Metallkäfig verwendet werden. Bei Bestückung mit einer Filzdichtung ändern sich die Längenabmessungen der Muttern.

Aufbau der Bestellbezeichnung

2 LBS40 UU CL +1000L P K

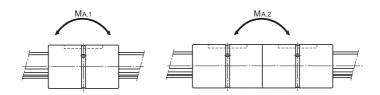
Baugröße Symbol für Abdichtung Vorspannungsklasse in Drehrichtung (*2)

Anzahl der Muttern auf einer Welle (bei einer Mutter keine Angabe)

Symbol für Symbol für Genauigkeitsklasse Standardhohlwelle (*4)

Symbol für Symbol für Genauigkeitsklasse Standardhohlwelle (*4)

Symbol für Genauigkeitsklasse Standardhohlwelle (*4)


(*3)

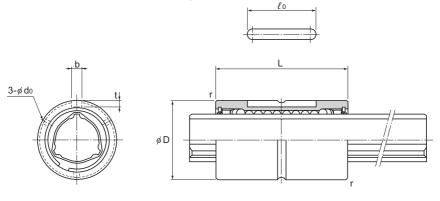
Gesamtlänge der Keilwelle (*5)

(in mm)

(*1) Siehe A3-126. (*2) Siehe A3-30. (*3) Siehe A3-35. (*4) Siehe A3-69. (*5) Siehe A3-121.

Einheit: mm

	Außendurchmesser Keilwelle		Torsionsbelastung		Tragzah	I (radial)		statisches nent	Masse			
Schmierbohrung												
d₀	D₀	d₅	C _⊤ Nm	С₀т Nm	C kN	C₀ kN	M _{A.1} Nm	M _{A.2} Nm	Keilwellenmutter kg	Keilwelle kg/m		
2	14,5	_	30,4	74,5	4,4	8,4	25,4	185	0,06	1		
2	19,7	_	74,5	160	7,8	14,9	60,2	408	0,14	1,8		
2	24,5	_	154	307	13	23,5	118	760	0,25	2,7		
3	29,6	_	273	538	19,3	33,8	203	1270	0,44	3,8		
3	39,8	_	599	1140	31,9	53,4	387	2640	1	6,8		
4	49,5	_	1100	1940	46,6	73	594	4050	1,7	10,6		
4	70	_	2190	3800	66,4	102	895	6530	3,1	21,3		
5	84	_	3620	6360	90,5	141	2000	12600	5,5	32		
5	99	_	5190	12600	126	237	3460	20600	9,5	45		


Hinweis: M_{A.1} ist das zulässige Moment in Axialrichtung bei Verwendung einer Mutter auf der Keilwelle.

M_{A.2} ist das zulässige Moment in Axialrichtung bei Verwendung von zwei eng zusammengesetzten Muttern auf der Keilwelle.

Netwielle Angaben zu den Maximallängen von Kugelkeilwellen nach Genauigkeit finden Sie auf Seite

3-121.

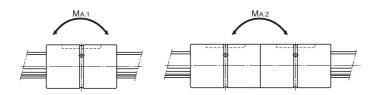
Typ LBST (Schwerlasttyp)

				Al	bmessungen Kei	lwellenmı	utter			
Pau	reihe/-größe	Außer	ndurchmesser		Länge	Abmessu	ingen Pas	sfedernut		Schmier-bohrung
Dau	nemer-große	D	Toleranz	L	Toleranz	b H8	t +0,1 0	ℓ_{0}	r	d₀
0	LBST 20	30	0	60	0 -0,2	4	2,5	26	0,5	2
	LBST 25	37	-0,016	70		5	3	33	0,5	2
0	LBST 30	45		80		7	4	41	1	3
0	LBST 40	60	0	100	0	10	4,5	55	1	3
0	LBST 50	75	-0,019	112	-0,3	15	5	60	1,5	4
0	LBST 60	90		127		18	6	68	1,5	4
0	LBST 70	100	0 -0,022	135		18	6	68	2	4
0	LBST 85	120	0,022	155	0	20	7	80	2,5	5
	LBST 100	140	0	175	-0,4	28	9	93	3	5
0	LBST 120	160	-0,025	200	0	28	9	123	3,5	6
0	LBST 150	205	0 -0,029	250	-0,5	32	10	157	3,5	6

Hinweis: O: markiert die Baureihen/-größen, bei denen Varianten für hohe Temperaturen verfügbar sind (mit Metallkäfig; Betriebstemperatur: bis 100°C).

(Beispiel) LBST25 A CM + 400L H

Symbol für hohe Temperaturen

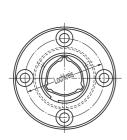

markiert die Baureihen/-größen, die mit Filzdichtung verfügbar sind (siehe M3-126).
 Filzdichtungen können nicht für Kugelkeilwellen mit Metallkäfig verwendet werden.

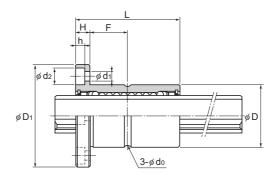
Aufbau der Bestellbezeichnung

(*1) Siehe A3-126. (*2) Siehe A3-30. (*3) Siehe A3-35. (*4) Siehe A3-69. (*5) Siehe A3-121.

Finheit: mm

Einneit: mi									
Torsions	pelastung	Tragzah	l (radial)	Zulässiges stat	isches Moment	t Masse			
C _⊤ Nm	С _{от} Nm	C kN	C₀ kN	M _{A1} ** Nm	M _{A.2} ** Nm	Keilwellenmutter kg	Keilwelle kg/m		
90,2	213	9,4	20,1	103	632	0,17	1,8		
176	381	14,9	28,7	171	1060	0,29	2,7		
312	657	22,5	41,4	295	1740	0,5	3,8		
696	1420	37,1	66,9	586	3540	1,1	6,8		
1290	2500	55,1	94,1	941	5610	1,9	10,6		
1870	3830	66,2	121	1300	8280	3,3	15,6		
3000	6090	90,8	164	2080	11800	3,8	21,3		
4740	9550	119	213	3180	17300	6,1	32		
6460	14400	137	271	4410	25400	10,4	45		
8380	19400	148	306	5490	32400	12,9	69,5		
13900	32200	196	405	8060	55400	28	116,6		


Hinweis: **M_{A1} ist der zulässige Momentwert in Axialrichtung bei Einsatz einer einzelnen Keilwellenmutter gemäß obiger Abbildung.
**M_{A2} ist der zulässige Momentwert in Axialrichtung bei Einsatz von zwei zusammengesetzten Keilwellenmuttern


gemäß obiger Abbildung.

Detaillierte Angaben zu den Maximallängen von Kugelkeilwellen nach Genauigkeit finden Sie auf Seite

3-121.

Typ LBF (Standardtyp)

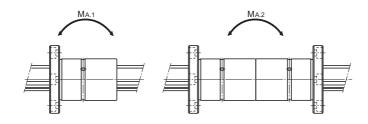
				Abmessi	ungen Ke	eilwellenmutt	er			
Baureihe/-größe	Außend	urchmesser	L	änge	Flansch	durchmesser			Schmierbohrung	
	D	Toleranz	L	Toleranz	D ₁	Toleranz	Н	F	d₀	Lochkreis
LBF 15	23	0 -0,013	40	0	43		7	13	2	32
○● LBF 20	30		50	-0,2	49		7	18	2	38
○● LBF 25	37	0 -0,016	60		60	0 -0,2	9	21	2	47
○● LBF 30	45		70		70		10	25	3	54
○● LBF 40	57		90	0	90		14	31	3	70
○● LBF 50	70	0 -0,019	100	-0,3	108		16	34	4	86
O LBF 60	85		127		124	0	18	45,5	4	102
○● LBF 70	95	0	110		142	-0,3	20	35	4	117
○● LBF 85	115	-0,022	140	0	168		22	48	5	138
○● LBF 100	135	0 -0,025	160	-0,4	195	0 -0,4	25	55	5	162

 $Hinweis: \bigcirc: markiert \ die \ Baureihen/-gr\"{o}Sen, bei \ den en \ Varianten \ f\"{u}r \ hohe \ Temperaturen \ verf\"{u}gbar \ sind \ (mit \ Metallk\"{a}fig; \ Betriebstemperatur: bis \ 100°C).$

(Beispiel) LBF20 A CL + 500L H

Symbol für hohe Temperaturen

●: markiert die Baureihen/-größen, die mit Filzdichtung verfügbar sind (siehe **△3-126**). Filzdichtungen können nicht für Kugelkeilwellen mit Metallkäfig verwendet werden.


Aufbau der Bestellbezeichnung

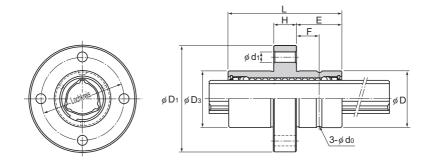
Anzahl der Muttern auf einer Welle (*1) Gesamtlänge der Keilwelle (*5) (in mm)

(bei einer Mutter keine Angabe)

(*1) Siehe A3-126. (*2) Siehe A3-30. (*3) Siehe A3-35. (*4) Siehe A3-69. (*5) Siehe A3-121.

Einheit: mm

	Torsionsb	elastung	Tragzah	l (radial)	Zulässiges stat	isches Moment	Masse		
Befestigungsbohrung									
$d_1 \times d_2 \times h$	C _⊤ Nm	С₀т Nm	C kN	C₀ kN	M _{A.1} ** Nm	M _{A.2} ** Nm	Keilwellenmutter kg	Keilwelle kg/m	
4,5×8×4,4	30,4	74,5	4,4	8,4	25,4	185	0,11	1	
4,5×8×4,4	74,5	160	7,8	14,9	60,2	408	0,2	1,8	
5,5×9,5×5,4	154	307	13	23,5	118	760	0,36	2,7	
6,6×11×6,5	273	538	19,3	33,8	203	1270	0,6	3,8	
9×14×8,6	599	1140	31,9	53,4	387	2640	1,2	6,8	
11×17,5×11	1100	1940	46,6	73	594	4050	1,9	10,6	
11×17,5×11	1870	3830	66,2	121	1300	8280	3,5	15,6	
14×20×13	2190	3800	66,4	102	895	6530	3,6	21,3	
16×23×15,2	3620	6360	90,5	141	2000	12600	6,2	32	
18×26×17,5	5910	12600	126	237	3460	20600	11	45	


Hinweis: **M_{A.1} ist der zulässige Momentwert in Axialrichtung bei Einsatz einer einzelnen Keilwellenmutter gemäß obiger Abbildung.
**M_{A.2} ist der zulässige Momentwert in Axialrichtung bei Einsatz von zwei zusammengesetzten Keilwellenmuttern

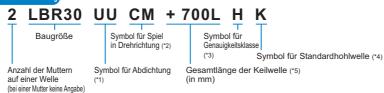
gemäß obiger Abbildung.

Detaillierte Angaben zu den Maximallängen von Kugelkeilwellen nach Genauigkeit finden Sie auf Seite

3-121.

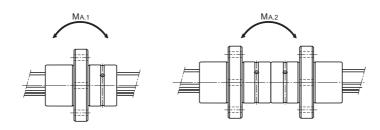
Typ LBR

			Ak	messun	gen Keilwelle	nmutter			
Baureihe/-größe	Außen	durchmesser	Außendurchmesser	L	änge	Flanschdurchmesser			
	D	Toleranz	D₃	L	Toleranz	D ₁	Н	E	Lochkreis
LBR 15	25	0 -0,013	25,35	40	0	45,4	9	15,5	34
○● LBR 20	30		30,35	60	-0,2	56,4	12	24	44
○● LBR 25	40	0 -0,016	40,35	70		70,4	14	28	54
○● LBR 30	45		45,4	80		75,4	16	32	61
○● LBR 40	60	0	60,4	100	0	96,4	18	41	78
○● LBR 50	75	-0,019	75,4	112	-0,3	112,4	20	46	94
O LBR 60	90		90,5	127		134,5	22	52,5	112
○● LBR 70	95	0 -0,022	95,6	135		140,6	24	55,5	117
○● LBR 85	120		120,6	155	0	170,6	26	64,5	146
○● LBR 100	140	0 -0,025	140,6	175	-0,4	198,6	34	70,5	170


Hinweis: O: markiert die Baureihen/-größen, bei denen Varianten für hohe Temperaturen verfügbar sind (mit Metallkäfig; Betriebstemperatur: bis 100°C).

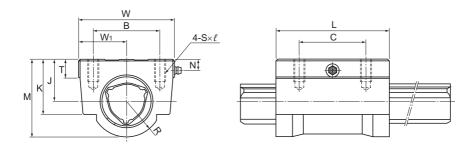
(Beispiel) LBR40 A CM + 600L H

Symbol für hohe Temperaturen


markiert die Baureihen/-größen, die mit Filzdichtung verfügbar sind (siehe M3-126).
 Filzdichtungen können nicht für Kugelkeilwellen mit Metallkäfig verwendet werden.

Aufbau der Bestellbezeichnung

(*1) Siehe A3-126. (*2) Siehe A3-30. (*3) Siehe A3-35. (*4) Siehe A3-69. (*5) Siehe A3-121.


Einheit: mm

			Torsionsb	elastung	Tragzah	l (radial)		siges Moment	Masse	
Befestigungsbohrung		Schmierbohrung								
d₁	F	d₀	C _⊤ Nm	С₀т Nm	C kN	C₀ kN	M _{A.1} ** Nm	M _{A.2} ** Nm	Keilwellenmutter kg	Keilwelle kg/m
4,5	7,5	2	30,4	74,5	4,4	8,4	25,4	185	0,14	1
5,5	12	2	90,2	213	9,4	20,1	103	632	0,33	1,8
5,5	14	2	176	381	14,9	28,7	171	1060	0,54	2,7
6,6	16	3	312	657	22,5	41,4	295	1740	0,9	3,8
9	20,5	3	696	1420	37,1	66,9	586	3540	1,7	6,8
11	23	4	1290	2500	55,1	94,1	941	5610	2,7	10,6
11	26	4	1870	3830	66,2	121	1300	8280	3,7	15,6
14	27	4	3000	6090	90,8	164	2080	11800	6	21,3
16	32	5	4740	9550	119	213	3180	17300	8,3	32
18	35	5	6460	14400	137	271	4410	25400	14,2	45

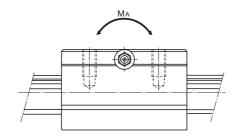
Hinweis: **M_{A.1} ist der zulässige Momentwert in Axialrichtung bei Einsatz einer einzelnen Keilwellenmutter gemäß obiger Abbildung.
**M_{A.2} ist der zulässige Momentwert in Axialrichtung bei Einsatz von zwei zusammengesetzten Keilwellenmuttern gemäß obiger Abbildung.
Detaillierte Angaben zu den Maximallängen von Kugelkeilwellen nach Genauigkeit finden Sie auf Seite

3-121.

Typ LBH


				Abme	essungen	Keilwellenn	nutter				
Baureihe/-größe	Höhe	Breite	Länge				J	W ₁			
	М	W	L	В	С	S ×ℓ	±0,15	±0,15	Т	K	
O LBH 15	29	34	43	26	26	M4 × 10	15	17	6	20	
○● LBH 20	38	48	62	35	35	M6 × 12	20	24	7	26	
○● LBH 25	47	60	73	40	40	M8 × 16	25	30	8	33	
○● LBH 30	57	70	83	50	50	M8 × 16	30	35	10	39	
○● LBH 40	70	86	102	60	60	M10 × 20	38	43	15	50	
○● LBH 50	88	100	115	75	75	M12 × 25	48	50	18	63	

Hinweis: O: markiert die Baureihen/-größen, bei denen Varianten für hohe Temperaturen verfügbar sind (mit Metallkäfig; Betriebstemperatur: bis 100°C). (Beispiel) LBH30 A CM + 600L H

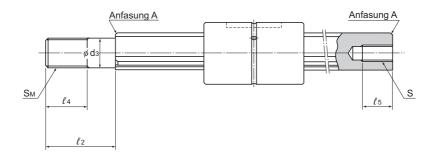

Symbol f
ür hohe Temperaturen

: markiert die Baureihen/-größen, die mit Filzdichtung verfügbar sind (siehe M3-126).
 Filzdichtungen können nicht für Kugelkeilwellen mit Metallkäfig verwendet werden.

Aufbau der Bestellbezeichnung

(*1) Siehe A3-126. (*2) Siehe A3-30. (*3) Siehe A3-35. (*4) Siehe A3-69. (*5) Siehe A3-121.

Einheit: mm


Limot. II											
				Torsionsb	elastung	Tragzah	l (radial)	Zulässiges stati- sches Moment	Mas	sse	
	R	N	Schmier- nippel	Ст С ₀ т Nm Nm		C kN	C₀ kN	M _A ** Nm	Keilwellenmutter kg	Keilwelle kg/m	
	14	5	φ4 Eintreib- nippel	30,4	74,5	4,4	8,4	25,4	0,23	1	
	18	7	A-M6F	90,2	213	9,4	20,1	103	0,58	1,8	
	22	6	A-M6F	176	381	14,9	28,7	171	1,1	2,7	
	26	8	A-M6F	312	657	22,5	41,4	295	1,73	3,8	
	32	10	A-M6F	696	1420	37,1	66,9	586	3,18	6,8	
	40	13,5	A-PT1/8	1290	2500	55,1	94,1	941	5,1	10,6	

Hinweis: **M_A ist das zulässige statische Moment in axialer Richtung bei Einsatz einer einzelnen Keilwellenmutter gemäß obiger Abbildung.

Detaillierte Angaben zu den Maximallängen von Kugelkeilwellen nach Genauigkeit finden Sie auf Seite

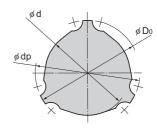
3-121.

Typ LBS mit empfohlener Ausführung der Wellenenden

Einheit: mm

Baureihe/-größe	d₃	Toleranz	ℓ_2	S _M	ℓ_4	S ×ℓ₅
LBS 15	10	0 -0,015	23	M10 × 1,25	14	M6 × 10
LBS 20	14	0 -0,018	30	M14 × 1,5	18	M8 × 15
LBS 25	18		42	M18 × 1,5	25	M10 × 18
LBS 30	20	0	46	M20 × 1,5	27	M12 × 20
LBS 40	30	-0,021	70	M30 × 2	40	M18 × 30
LBS 50	36	0 -0,025	80	M36 × 3	46	M20 × 35

Hinweis: Details zur Anfasung A siehe **43-70**.


Keilwellen

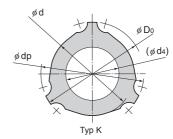
Keilwellen werden nach ihrer Form in massive Präzisions-Keilwellen, spezialgefertigte Keilwellen und hohle Keilwellen (Typ K) eingeteilt. Siehe Seite **A3-57**.

Da die Anfertigung von Keilwellen mit speziellem Querschnitt gemäß Ihrer Bestellung erfolgt, ist bei der Angebotseinholung bzw. Bestellung eine Zeichnung der gewünschten Wellenform vorzulegen.

[Keilwellenguerschnitte]

In Tab. 2 ist der Querschnitt einer Keilwelle dargestellt. Sind zylindrische Keilwellenenden erforderlich, sollte der Kerndurchmesser (ϕ d) nach Möglichkeit nicht überschritten werden.

Tab. 2 Keilwellenguerschnitte


Einheit: mm

Wellen-Nenndurchmesser	15	20	25	30	40	50	60	70	85	100	120	150
Kerndurchmesser φ d	11,7	15,3	19,5	22,5	31	39	46,5	54,5	67	81	101	130
Außendurchmesser ϕD_0	14,5	19,7	24,5	29,6	39,8	49,5	60	70	84	99	117	147
Kugelmittenkreis	15	20	25	30	40	50	60	70	85	100	120	150
Masse (kg/m)	1	1,8	2,7	3,8	6,8	10,6	15,6	21,3	32	45	69,5	116,6

^{*}Der Kerndurchmesser ød ist ein Wert, bei dem nach dem Abspanen keine Laufbahn verbleibt.

[Querschnittsabmessungen von Hohlwellen]

Tab. 3 gibt dazu die Querschnittsabmessungen von Standardhohlwellan an. Hohlwellen werden verwendet, wenn das Gewicht verringert werden soll, Kabel oder Leitungen durchgeführt werden bzw. zur Belüftung.

Tab. 3 Querschnitt der hohlen Standard-Keilwellen

Einheit: mm

Wellen-Nenndurchmesser	20	25	30	40	50	60	70	85	100	120	150
Kerndurchmesser φd	15,3	19,5	22,5	31	39	46,5	54,5	67	81	101	130
Außendurchmesser <i>φ</i> D₀	19,7	24,5	29,6	39,8	49,5	60	70	84	99	117	147
Kugelmittenkreis	20	25	30	40	50	60	70	85	100	120	150
Bohrungsdurchmesser (\phi d_4)	6	8	12	18	24	30	35	45	56	60	80
Masse (kg/m)	1,6	2,3	2,9	4,9	7	10	13,7	19,5	25,7	47,3	77,1

^{*}Der Kerndurchmesser ød ist ein Wert, bei dem nach dem Abspanen keine Laufbahn verbleibt.

[Anfasung der Wellenenden]

Damit die Keilwellenmuttern problemlos auf die Keilwellen gezogen werden können, werden die Enden in der Regel mit den nachfolgend angegebenen Maßen angefast, sofern keine abweichenden Spezifikationen vorliegen.

Anfasung A

Bei abgestuften, mit Innengewinde oder Bohrungen versehenen Wellenenden erfolgt die Anfasung A gemäß den Maßen aus Tab. 4.

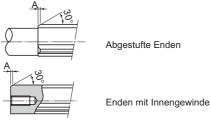


Abb. 2 Anfasung A

Anfasung B

Dienen Wellenenden keinem besonderen Zweck, wie bei Loslagerung, erfolgt die Anfasung mit den B-Maßen gemäß Tab. 4.

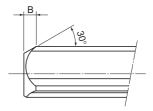
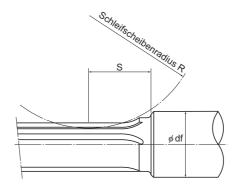


Abb. 3 Anfasung B

Tab. 4 Maße für die Anfasung von Keilwellenenden

Einheit: mm


Wellen-Nenn- durchmesser	15	20	25	30	40	50	60	70	85	100	120	150
Anfasung A	1	1	1,5	2,5	3	3,5	5	6,5	7	7	7,5	8
Anfasung B	3,5	4,5	5,5	7	8,5	10	13	15	16	17	17	18

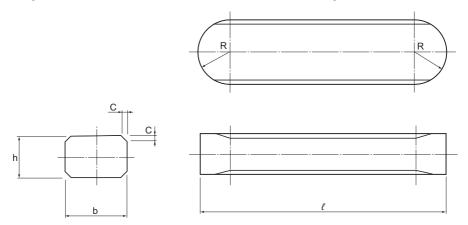
Hinweis: Keilwellen mit einem Nenndurchmesser von 6, 8 oder 10 werden auf 0,5x30° angefast.

[Länge unvollständig bearbeiteter Bereiche spezialgefertigter Keilwellen]

Soll der Durchmesser in der Mitte oder am Ende von Keilwellen größer sein als der Kerndurchmesser (ϕ d), entstehen durch den Schleifscheibenauslauf unvollständig bearbeitete Keilwellenbereiche. In Tab. 5 ist das Verhältnis zwischen der Länge des unvollständig bearbeiteten Bereichs und dem Flanschdurchmesser (ϕ df) dargestellt.

(Diese Tabelle gilt nicht für Gesamtlängen von 1.500 mm und mehr. Detaillierte Angaben erhalten Sie von THK.)

Tab. 5 Länge des unvollständig bearbeiteten Wellenbereichs: S


Einheit: mm

Lilli											Cit. IIIIII				
Flansch- durchmesser ødf Wellen-Nenn- durchmesser	15	20	25	30	35	40	50	60	80	100	120	140	160	180	200
15	32	42	49	55	60	_	_	_	_	_	_	_	_	_	_
20	_	35	43	51	57	62	_	_	_	_	_	_	_	_	_
25	_	_	51	64	74	82	97	_	_	_	_	_	_	_	_
30	_	_	_	54	67	76	92	105	_	_	_	_	_	_	_
40	_	_	_	_	_	59	80	95	119	_	_	_	_	_	_
50	_	_	_	_	_	_	63	83	110	131	_	_	_	_	_
60	_	_	_	_	_	_	_	66	100	123	140	_	_	_	_
70	_	_	_	_	_	_	_	_	89	115	134	150	_	_	_
85	_	_	_	_	_	_	_	_	61	98	122	140	_	_	_
100	_	_	_	_	_	_	_	_	_	78	108	130	147	_	_
120		_	_	_	_		_	_		_	81	111	133	150	_
150												64	101	125	144

^{*}Diese Tabelle gilt nicht für Gesamtlängen von 1.500 mm und mehr. Detaillierte Angaben erhalten Sie von THK.

Zubehör

Die Kugelkeilwellen LBS und LBST sind mit einer Standard-Passfeder gemäß Tab. 6 versehen.

Tab. 6 Standard-Passfedern für LBS und LBST

Einheit: mm

Wellen-Nenn-		Breite b		Höhe h		Länge ℓ	_	
durchmesser		Toleranz (p7)		Toleranz (h9)		Toleranz (h12)	R	С
LBS 15	3,5		3,5		20	0	1,75	
LBS 20 LBST 20	4	+0,024 +0,012	4	0 -0,030	26	-0,210	2	
LBS 25 LBST 25	5	10,012	5	-0,030	33	0	2,5	0,5
LBS 30 LBST 30	7	+0,030	7		41	-0,250	3,5	
LBS 40 LBST 40	10	+0,015	8	0 -0,036	55		5	0,8
LBS 50 LBST 50	15	+0,036	10		60	0 -0,300	7,5	0,6
LBST 60 LBS 70 LBST 70	18	+0,018	12		68	-0,000	9	
LBS 85 LBST 85	20	.0.042	13	0 -0,043	80	0 -0,350	14	1,2
LBS 100 LBST 100	28	+0,043 +0,022	18		93	0	14	
LBST 120	28		18		123	0 -0,400	14	
LBST 150	32	+0,051 +0,026	20	0 -0,052	157	0,400	16	2